Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.pediatria.gob.mx:8180/handle/20.500.12103/1826
Título : Inteligencia artificial para asistir el diagnóstico clínico en medicina
Artificial intelligence to assist clinical diagnosis in medicine
Creador: Lugo Reyes, Saul Oswaldo
Nivel de acceso: Open access
Palabras clave : Inteligencia artificial
Sistemas de Apoyo a Decisiones Clínicas
Diagnóstico Clínico
Minería de Datos
Diagnóstico Diferencial
Modelos Logísticos
Aprendizaje Automático
Técnicas y Procedimientos Diagnósticos
Humanos
Artificial intelligence
Clinical decision support
Clinical diagnosis
Data mining
Differential diagnosis
Logistic regression
Machine learning
Diagnostic Techniques and Procedures
Humans
Inteligencia Artificial
Soporte de decisiones clínicas
Diagnóstico clínico
Minería de datos
Diagnóstico diferencial
Regresión logística
Aprendizaje automático
Artificial intelligence
Clinical decision support
Clinical diagnosis
Data mining
Differential diagnosis
Logistic regression
Machine learning
Descripción : La medicina es uno de los campos del conocimiento que más podrían beneficiarse de una interacción cercana con la computación y las matemáticas, mediante la cual se optimizarían procesos complejos e imperfectos como el diagnóstico diferencial. De esto se ocupa el aprendizaje automático, rama de la inteligencia artificial que construye y estudia sistemas capaces de aprender a partir de un conjunto de datos de adiestramiento y de mejorar procesos de clasificación y predicción. En México, en los últimos años se ha avanzado en la implantación del expediente electrónico y los Institutos Nacionales de Salud cuentan con una riqueza de datos clínicos almacenada. Para que esos datos se conviertan en conocimiento, necesitan ser procesados y analizados a través de métodos estadísticos complejos, como ya se hace en otros países, usando: razonamiento basado en casos, redes neuronales artificiales, clasificadores bayesianos, regresión logística multivariante o máquinas de soporte vectorial, entre otros. Esto facilitará el diagnóstico clínico de padecimientos como: apendicitis aguda, cáncer de mama o hepatopatía crónica. En esta revisión se repasan conceptos, antecedentes, ejemplos y métodos de aprendizaje automático en diagnóstico clínico.
Medicine is one of the fields of knowledge that would most benefit from a closer interaction with Computer studies and Mathematics by optimizing complex, imperfect processes such as differential diagnosis; this is the domain of Machine Learning, a branch of Artificial Intelligence that builds and studies systems capable of learning from a set of training data, in order to optimize classification and prediction processes. In Mexico during the last few years, progress has been made on the implementation of electronic clinical records, so that the National Institutes of Health already have accumulated a wealth of stored data. For those data to become knowledge, they need to be processed and analyzed through complex statistical methods, as it is already being done in other countries, employing: case-based reasoning, artificial neural networks, Bayesian classifiers, multivariate logistic regression, or support vector machines, among other methodologies; to assist the clinical diagnosis of acute appendicitis, breast cancer and chronic liver disease, among a wide array of maladies. In this review we shift through concepts, antecedents, current examples and methodologies of machine learning-assisted clinical diagnosis.
Colaborador(es) u otros Autores: Maldonado-Colín G
 Murata C
Fecha de publicación : 2014
Tipo de publicación: Artículo
Formato: pdf
Fuente: Revista Alergia México 61(2):110-120
URI : http://repositorio.pediatria.gob.mx:8180/handle/20.500.12103/1826
Idioma: eng
Aparece en las colecciones: Artículos

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.